A Distributed Algorithm for Minimum Distance-k Domination in Trees

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Distributed Algorithm for Minimum Distance-k Domination in Trees

While efficient algorithms for finding minimal distance-k dominating sets exist, finding minimum such sets is NP-hard even for bipartite graphs. This paper presents a distributed algorithm to determine a minimum (connected) distance-k dominating set and a maximum distance-2k independent set of a tree T . It terminates in O(height(T )) rounds and uses O(log k) space. To the best of our knowledge...

متن کامل

Unique minimum domination in trees

A set D of vertices in a graph G is a distance-k dominating set if every vertex of G either is in D or is within distance k of at least one vertex in D. A distance-k dominating set of G of minimum cardinality is called a minimum distance-k dominating set of G. For any graph G and for a subset F of the edge set of G the set F is an edge dominating set of G if every edge of G either is in D or is...

متن کامل

Summary of “A Distributed Algorithm for Minimum-Weight Spanning Trees”

This document summarizes the article published by Gallagerher et. al on “A Distributed Algorithm for Minimum-Weight Spanning Trees”. The asynchronous distributed algorithm determines a minimum-weight spanning tree for an undirected graph that has distinct finite weights for every edge.

متن کامل

Mixed Domination in Trees: A Parallel Algorithm

A set of vertices S in a graph G = (V;E) is called a dominating set of G if every vertex in the set (V n S) is adjacent to some vertex in S. For arbitrary graphs, the problem of computing smallest dominating set is NP-complete [3]. A slightly more general version of this problem is called \mixed domination" problem [1]. In this paper we present new parallel NC algorithm to nd smallest mixed dom...

متن کامل

A distributed approximation algorithm for the minimum degree minimum weight spanning trees

Fischer [3] has shown how to compute a minimum weight spanning tree of degree at most b∆∗ + ⌈logb n⌉ in time O(n 4+1/ln ) for any constant b > 1, where ∆∗ is the value of an optimal solution and n is the number of nodes in the network. In this paper, we propose a distributed version of Fischer’s algorithm that requires messages and time complexity O(n ), and O(n) space per node.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Graph Algorithms and Applications

سال: 2015

ISSN: 1526-1719

DOI: 10.7155/jgaa.00354